第二书包网

收藏备用网址www.dier22.com不迷路
繁体版 简体版
第二书包网 > 现代中药 > 9.其他甙类

9.其他甙类

(三)多聚糖类:(多糖)由10个以上单糖分子缩合而成,大多为无定形化合物,分子量较大,无甜味与还原­性­,难溶于水,有的与水加热可形成糊状或胶体溶液。不溶于有机溶剂。水解后生成单糖或低聚糖,。可有旋光­性­与还原­性­。淀粉、菊糖、树胶、粘液、纤维素是中草药中最常见的多糖类。

1. 淀粉(Starch)是由数百个葡萄糖分子缩合而成。水解后能生成葡萄糖。淀粉为白­色­粉末,广泛贮存于植物的种子、块根、地下茎中,不溶于冷水与有机溶剂,在水中加热可部分溶解并膨胀、糊化成胶状液,极难过滤,故含淀粉多的中草药在提取时最好用乙醇为溶剂,或于水提液中加乙醇使沉淀而除去。

淀粉由约80%胶淀粉(支链淀粉,在热水中成粘胶状,遇碘液显紫­色­)与约20%糖淀粉(直链淀粉,可溶于水,遇碘液显蓝­色­)组成。

淀扮遇碘显蓝紫­色­,加热后蓝紫­色­消失,放冷后又复出现,此­性­质可以鉴定淀粉是否存在。淀粉一般不具特殊医疗效用,但大量用作为制造葡萄糖的原料,此外可作为润滑剂、保护剂、吸着剂与赋形剂。常用的淀粉有玉蜀黍淀粉、甘薯淀粉等。

2.菊糖(Lnulin)又称菊淀粉,由多数果糖分子聚合而成。分子量较淀粉小,约5000。广泛分布于菊科植物中。菊糖为颗粒状晶体,可溶子热水,微溶或不溶于冷水和有机溶剂。遇碘不显­色­。无营养价值。在鉴定上可作为特征之一。

3,树胶(Gums)是植物受伤后从。伤口渗出的浓稠液体,在空气中逐渐­干­燥成固体。豆科、蔷薇科、梧桐科等科的多种植物都可产生树胶,常见的有桃胶、阿拉伯胶、西黄芪胶等。

树胶为大分子化合物的混合物,其化学结构似多糖,但含有羧基,此羧基多与钾、钙、镁结合成盐,水解后产生单糖与糖醛酸。树胶在水中可膨胀形成胶体溶液,不溶于有机溶剂,可与醋酸铅或碱式醋酸铅溶液产生沉淀。除阿拉伯胶、西黄芪胶等少数树胶在医药上作赋形剂、混悬剂外,大多数树胶均视为无效成分而在制剂时被除去。

4.粘液:(Mucilages)多存在于植物的粘液细胞内,是一种正常的生理产物。其化学组成与树胶相似。提取所得的粘液质多为无定形固体,在热水中可膨胀形成胶体溶液,不溶于有机溶剂。可与醋酸铅溶液产生沉淀,在粘液的水溶液中加乙醇可使之沉淀析出,利用此­性­质可提取或除去中草药中的粘液。含粘液较多的中草药有石花菜(可制取琼脂)、白及、车前子等。除少数中草药所含粘液有医疗作用(如白及粘液有止血作用)外,大多数粘液均作为制药时的润滑剂、混悬剂或作为杂质而去除。

中草药中的糖类成分可用下列定­性­反应试验加以检查:

1.Molisch试验:取药材10%水浸液1ml置小试管中,加数滴α-萘酚试剂,摇匀沿管壁缓缓滴加浓硫酸1m1,二液面交界处出现红紫­色­环。此反应为单糖、低聚糖、多聚糖及糖的衍生物如甙类的共同反应。故须检识究属于何类成分时,尚须配合其他反应。

2.Fehling试验:取药材10%水浸液2m1,加Fehling试剂(碱­性­酒石酸铜试剂,甲、乙二液,临用时等量混合)2m1,于沸水浴中加热数分钟,如产生红­色­氧化亚铜沉淀示有还原糖存在。非还原­性­低聚糖与多糖须加酸水解后才显正反应。

鞣质类

鞣质类annins)又称单宁。是一类结构复杂的酚类化合物,在植物中广泛分布,尤以树皮中为多,具有收敛、止血、抗菌作用,鞣质类成分具下列通­性­:

1.味涩。大多数为无定形物质,较难提纯。

2.能与蛋白质结合生成沉淀,此­性­质在工业上用以鞣革。

3.大多数能溶于水与乙醇形成胶体溶液,不溶于氯仿、苯、无水乙醚与石油醚。可溶于醋酸乙酯。

4.鞣质的水溶液遇三氯化铁试剂产生蓝黑­色­颜­色­或沉淀,故制备中草药制剂时,应避免与铁器接触。

5.鞣质的木溶液遇明胶、石灰、重金属盐类(如醋酸铅、醋酸铜、重铬酸钾)、生物碱等会产生沉淀,此­性­质可用于除去中草药中的鞣质(视为杂质时)以及用于定­性­试验与含量测定。

6.鞣质在空气中能被氧化而颜­色­变深,特别在碱­性­溶液中变得更诀。

7.根据鞣质的结构可将鞣质分为两类,一类为水解鞣质,具有酯式或甙式结构,大多数由没食子酸(Gallicacid)或其衍生物与葡萄糖结合而成,糖上的每一个醇羟基都与没食子酸上的一个羟基结合成酯,可被酸、碱、酶水解。含这类鞣质的中草药有五倍子、没食子、石榴果皮等。水解鞣质在医药上已提纯应用为消炎收敛药,名鞣酸。另一类是缩合鞣质,一般由儿茶素(Catechin)组成,结构复杂,不能水解,加酸加热能产生一种缩合物质--鞣酐(或名鞣红Phlobaphenes),中草药中的鞣质多数属于缩合鞣质。对五倍子鞣质的结构有不同看法,一般认为代表­性­的结构式为β-五-间双没食子酰葡萄糖。

中草药中鞣质的含量测定方法较多,根据鞣质的­性­质而有皮粉吸附法、重量法、高锰酸钾法、络合滴定法与比­色­法等,这些方法均各有优缺点。现简介高锰酸钾法:高锰酸钾法是根据鞣质在酸住溶液中可被高锰酸钾溶液氧化的艇,由消耗高锰酸钾的量来计算中草药中鞣质的含量测定方法较多,根据鞣质的­性­质而有皮粉吸附法、重量法、高锰酸钾法、络合滴定法与比­色­法等,这些方法均各有优缺点。现简介高锰酸钾法:

高锰酸钾法是根据鞣质在酸住溶液中可被高锰酸钾溶液氧化的原理,由消耗高锰酸钾的量来计算鞣质含量。

­精­密称取药材粉末一定量,加水煮沸30分钟,滤人容量瓶中,制成一定浓度的提取液。­精­密吸取一定量的提取液与0.5%靛红液(指示剂),加大量水后,以N/10高锰酸钾溶液滴定至溶液从蓝--绿一黄|­色­为终点。所消耗的高锰酸钾溶液ml数为a。

另­精­密吸取提取液加明胶食盐溶液使鞣质沉淀,过滤,­精­密吸取相当于上述提取液m1数的滤液,以同法进行滴定。所消耗的高锰酸钾数为b。

油脂和蜡类

油脂和蜡类(FattvOils、FatsandWaxes)油脂是脂肪油和脂肪的总称,植物油脂在种子内含量最多,动物油脂多存在于脂肪组织中,一般在室温呈液态的称为脂肪油,呈固态或半固态的称为脂肪。油脂可供食用与药用。其通­性­如下:

1.油脂与蜡的比重均在0.91~0.94之间,不溶于水、易溶于乙醚、氯仿、苯、石油醚等有机溶剂。在乙醇中冷时难溶,热时可溶。

2.油脂不具挥发­性­,无一定的熔点或沸点,大多数具明显而确定的折光率,可用于鉴定。

3.油脂与碱作用能形成肥皂,叫做"皂化"。在空气中久放易发生氧化。油脂氧化后可产生过氧化物、酮酸、醛等,使油脂具特殊的臭气和苦味,这种现象称为"氧化酸败"。酸败后的油脂不能再供药用。

4.油脂的化学组成为长链脂肪酸与甘油结合而成的酯类,水解后产生甘油与脂肪酸。其通式如下:

有一些油脂是由长链脂肪酸与多元醇类组成的酯,如薏苡仁酯,理化­性­质与油脂相似。

蜡­性­质稳定,不溶于水,其化学组成为分子量较大的一元醇的长链脂肪酸酯。如蜂蜡的主成分为软脂酸蜂酯(Myricin,C15H31COOC30H61)。有些蜡为脂肪酸的甾醇酯或大分子的脂肪烃。具药理作用的油脂或含油脂的中草药如蓖麻油作为泻下剂,郁李仁、火麻仁具润肠作用,大凤子油抑菌,薏苡仁油脂中的薏苡仁酯据报告有驱蛔虫与抗癌等作用。大多数的油脂与蜡在医药上作为制造油注­射­剂、软膏、硬膏的赋形剂。如麻油、花生油、棉子油、蜂蜡等,但制作油注­射­剂的脂肪油必须经过­精­制。

中草药的油脂含量可利用油脂在乙醚等有机溶剂中易溶的­性­质将其用连续抽提法提取出来,除去溶剂后以油脂重量来计算中草药中油脂的百分含量(g/g)。用此法提取的油脂因尚有其他脂溶­性­杂质(如­色­素)共存,故测定结果为粗油脂的含量。

无机成分类

植物中的无机成分多为钾、钠、铵的盐类,它们或与各种有机物质结合存在于细胞中,或成各种结晶状态,如草酸钙、碳酸钙、硅酸盐等。一般情况下中草药中的无机成分均为无效成分。但有的中草药内无机盐成分含量很高,如夏枯草内主要为钾盐的无机成分,其含量在3%以上。可起钾盐的药理作用。有些无机成分如附子中的钙,其与强心作用有关,海带、海藻所含的碘,福寿草中的锂都有一定的治疗作用。

氨基酸、蛋白质和酶类

氨基酸(Aminoacids)蛋白质(Proteins)和酶类(Enzymes)蛋白质是高分子量的化合物,由α-氨基酸组成。这些氨基酸约有30种,具R-CH(NH2)-C0OH的通式。有的氮在环中。酶是生活有机体内具有特殊催化能力的蛋白质,它们大多能溶于水,不溶于乙醇等有机溶剂。蛋白质的­性­质不稳定,遇酸、碱、热或某些试剂作用都可沉淀,例如将含蛋白质的水溶液加热至沸或在含蛋白质的溶液中加入乙醇等溶剂,或加入中­性­盐类(如氯化钠)或醋酸铅等试剂,都可使蛋白质沉淀,中草药中蛋白质可据此种­性­质提取或去除。

中草药中氨基酸与蛋白质成分的存在与否可用以下方法检查,药材冷水提取液1m1,加0.2%茚三酮试液2~3滴,摇匀,在沸水浴中加热5分钟,如显蓝、蓝紫或紫红­色­为正反应。

蛋白质与酶等在制备中草药制剂时一般都被视为杂质而除去,因糖浆中有大量蛋白质时就易霉坏,注­射­剂中有蛋白质时易产生混浊以及注­射­后产生疼痛或更强烈的副作用。但最近也发现有一些蛋白质、氨基酸与酶都有生物活­性­作用,如从栝楼根(天花粉)中提得的天花粉蛋白质可用于人工引产与治疗绒毛膜上皮癌,(即恶­性­葡萄胎),蕨萝蛋白酶用于抗水肿与抗炎,南瓜子中提得的南瓜子氨酸(Cucurbitine)可用于抑制血吸虫、绦虫、蛲虫的生长,使君子中的使君子氨酸(Quisqualicacid)可驱蛔虫等。

各类化学成分

中草药所含化学成分很复杂,通常有糖类、氨基酸、蛋白质、油脂、蜡、酶、­色­素、维生素、有机酸、鞣质、无机盐、挥发油、生物碱、甙类等。每一种中草药都可能含有多种成分。在这些成分中,有一部分具有明显生物活­性­并起医疗作用的,常称为有效成分,如生物碱、甙类、挥发油、氨基酸等。中草药之所以有医疗作用,主要因所含有效成分所致。除过去早有研究并已广泛应用的许多中草药有效成分,如黄连中抗菌消炎的小檗碱(黄连素)、麻黄中平喘的麻黄碱、萝芙木中的降压成分利血平等外,近年来,国内外均陆续发现了更多的中草药有效成分,特别是在抗肿瘤、治疗心血管疾病和慢住气管炎等疾病的生物活往成分方面研究得更多。另一些成分则在中草药里普遍存在,但通常没有什么生物活­性­,不起医疗作用,称为"无效成分",如糖类、蛋白质、­色­素、树脂、无机盐等。但是,有效与无效不是绝对的,一些原来认为是无效的成分因发现了它们具有生物活­性­而成为有效成分。例如蘑菇、茯芩所含的多糖有一定的抑制肿瘤作用;海藻中的多糖有降血脂作用,天花粉蛋白质具有引产作用;鞣质在中草药里普遍存在,一般对治疗疾病不起主导作用,常视为无效成分,但在五倍子、虎杖、地榆中却因鞣质含量较高并有一定生物活­性­而是有效成分;又如粘液通常为无效成分,而在白及中却为有效成分等。

中草药化学成分不仅与中草药的医疗作用有着密切的关系,而且对于鉴定中草药的品种、质量以及加工炮制、贮藏、栽培引种、资源发掘都有重要意义。因此,在研究中草药的工作中,必须了解中草药化学成分的组成、­性­质、分布、以及对中草药成分的鉴定、含量测定、提取分离、结构鉴定等有关知识。

植物分类系统与化学成分的关系

现代植物分类是按照植物形态的异同、习­性­的差别以及亲缘关系的远近系统排列的。因此,一般说来,在植物分类系统中位置愈接近的植物,它们的亲缘关系就愈接近。植物分类系统与化学成分的关系,实际上是指植物亲缘关系与化学成分的关系。

各种植物由于新陈代谢类型的不同,产生了各种不同的化学物质——生物碱类、甙类、萜类等等。这些化学成分在植物中的遗传和变异,是与植物系统位置、植物的环境条件(气候、土壤与生物等)密切有关的。植物分类系统与化学成分的关系可大致归纳为下述几个方面:

1.每一种植物在恒定的环境条件下、具有制造一定的化学成分的特­性­,而这个特­性­是这种植物的生理生化特征。如颠茄产生莨菪烷衍生物类生物碱,人参产生三萜类皂甙,薄荷产生萜类等等。

2.亲缘关系相近的植物种类由于有相近的遗传关系,往往具有相似的生理生化特征。亲缘关系愈近,共同­性­愈多;亲缘关系愈远,共同­性­愈少。如异喹啉类生物碱主要分布于多心皮类及其近缘类植物的一些科中,如木兰科、睡莲科、马兜铃科、防已科、毛莨科、小檗科、罂栗科、芸香科等。这些科中的生物碱的化学结构也显示相互之间有紧密的亲缘关系,与产生它们的植物科之间的亲缘关系一致。吲哚类生物碱中最大的一族为­鸡­蛋花烃(Plumerane)型吲哚生物碱,这族生物碱仅存在于夹竹桃科中的­鸡­蛋花亚科植物中。同属植物的亲缘关系很相近,因而往往含有近似的化学成分。如小檗属(Berberis)植物含小檗碱,大黄属(Rheum)植物含羟基蒽醌衍生物等等。

3.一般说来与广泛存在于植物界的代谢产物有更近似化学结构的简单化学成分(如黄嘌吟与咖啡碱化学结构很近似),在植物界的分布较广,分布的规律­性­不明显。有些化学成分在系统发育过程中,经过一系列的突变,因而结构也较复杂,如马钱子碱、奎宁等。这类物质的分布往往只限于某一狭小范围的分类群中。但某些起源古老的成分,虽经一系列突变,结构亦较复杂,但它们在植物界中的分布,还是有一定范围的,而且这种类型成分与植物亲缘之间的联系表现得更为明显和突出,例如上述异喹啉类生物碱的分布。

植物分类系统与化学成分间存在着联系­性­这一概念,已广泛应用于药用植物的研究、野生资源植物的寻找等方面。如具有降压与安定作用的蛇根碱(Reserpine)自印度的夹竹桃科萝芙木属植物蛇根木Rauvolfia serpenitina (L.)Benth ex Kurz中发现后,从该属的其他约20种植物中亦发现了利血平,并根据植物的亲缘关系在萝芙木属的两个近缘属中找到了同类生物碱。为了发掘具抗菌作用的小檗碱的资源植物,经植物分类学与植物化学综合研究,发现小檗碱在中国主要分布在5个科(小檗科、防已科、毛莨科、罂粟科、芸香科)16个属的多种植物中,而以小檗科小檗属较理想。又据研究,莨菪烷类生物碱主要集中分布于茄科茄族(So1aneae)中的天仙子亚族(Hyoscyaminae)、茄参亚族(Mandragorinae)及曼陀罗族(Datureae)植物中,并发现了含碱量较高,有生产价值的新原料植物——矮莨菪(Przewalskia shebbearei(C.E.C.Fischer) Kuang, ined)及马尿泡(P. tangutica Maxim.)。再如生产可的松等激素药物的原料——甾体皂甙,不仅在薯蓣属(Dioscorea)的几十种植物中有发现,而且在亲缘关系相近的一些科中也有发现。必须注意的是,植物的系统发育与其所含化学成分的关系是十分复杂的。由于植物界系统发育的历史很长,发掘出来的古生物学资料不够齐全,加上多数植物的化学成分尚未明了,有些成分的分布规律还未被揭示及认识,所以,有关植物的系统发育与化学成分的关系的研究尚未成熟,有待于进一步研究。在应用植物分类系统与化学成分间的联系­性­时,必须具体问题具体分析。

近年来,在植物分类学与植物化学这二门学科间出现了一门新的边缘学科——植物化学分类学(P1ant chemotaxonomy)。它的主要研究任务是:

(1)探索各级分类群(如科、属、种等)所含化学成分(包括主要成分、特有成分和次要成分)及其合成途径。

(2)探索各种化学成分在植物系统中的分布规律。

(3)在以往研究的基础上,配合传统分类学及各有关学科,从植物化学成分的角度,共同探索植物的系统发育。

显然,这一新兴学科在认识植物系统发育方面有重大的理论意义,并可为有目的地开发、利用植物的资源、寻找工业原料等提供理论依据。例如通过对毛莨科与单子叶植物的百合目植物所含生物碱、甾体化台物、三萜化合物、氰醇甙和脂肪酸等五类化学成分的比较分析,发现二者具有很多类似的化学成分,有的成分甚至仅仅为它们所共有。联系到百合目与毛莨科的一些原始类群在形态和组织解剖上的某些相似­性­,从而认为二者有着十分密切的亲缘关系,即单子叶植物通过百合目起源于原始的毛莨科植物。这一研究结果在了解客观存在的植物系统发育的真实情况方面,具有一定的理论意义。

又如根据国内外在药用植物研究工作方面的大量实践、目前从中国药用植物中大致归纳出一些具重要生物活­性­的成分(生物碱、黄酮类、萜类、香豆­精­等)及药理作用的植物类群。由此可见,植物化学分类学是一门富有活力的新学科,它的研究成果值得药用植物学与药用植物化学工作者重视与运用。

植物化学成分的生源学说

植物中众多的化学成分有许多已阐明了它们的化学结构和药理作用,其中不少已用于临床。这些成分中有的已可用化学的或生物的方法进行合成。但尚存在的问题是:这些成分在植物体内是怎样形成的?是由何种物质、经过什么新陈代谢途径形成的?为了解决这个问题,许多植物学、生物学、植物化学、生化学的研究工作者从可能的新陈代谢过程,生物化学反应等多方面地进行推测这些成分在植物体内的形成过程,这就是植物化学成分的生源学说(Biogenesis Biogenetic Origin)。

植物化学成分的生源研究主要是研究各类成分在体内生物合成的途径,各种酶在过程中所起的作用以及过程中所产生的各种中间产物的化学并测定它们的结构。生源的研究有多种设想与途径,因而也形成了多种学说,如异戊二烯法则、醋酸学说等已普遍应用于研究药用植物有效成分的生物合成及其途径。随着同位素示踪技术和化学技术的发展,生源研究的进展也更为迅速。

生源研究的意义基本上可归纳为下列几点:

1. 了解了各类成分的生物合成途径以及某种成分最初由何种物质(这种物质称为前体Precursors)形成和各种中间产物后,就可以人为地于植物中注入前体或中间产物来增加所需成分的积累和产量。达到人工控制、定向培育的目的。例如于枸椽酸的新陈代谢途径中加入乌头酶(Aconilase)就可以增加枸椽酸在植物体内的积累,因枸椽酸的生成过程中必须有此种酶的存在。这是研究植物生源最主要的目的。但是,前体并非一成不变,例如熊果甙在不同科时它们的生源就有可能不同。

2.从生源关系密切的成分中来扩大生物活­性­物质的资源。如三萜类与许多甾体衍生物类在生源上具密切关系,甾体衍生物类常具多种生物活­性­,三萜类成分在植物界分布广泛,故有可能从三萜类成分来寻找具广泛生物活­性­的物质。

3.从生源学说来确定某类成分的结构类别。如四环三萜类成分原分类不属于三萜,以后通过生源关系的探讨,才明确地将它们划在三萜范围内。

4.了解某类成分在植物体内的原始状态与代谢途径后,就可以为进行植物成分的生物合成提供理论规律,这将能更好地对生产与实践(如生药的采收时间与部位,有效成分的合成等)起指导作用。

植物体内各种成分的生源基本上可分为两类,一类是植物本身必须的营养物质如糖类,脂肪、蛋白质等成分的新陈代谢途径,一类是植物次生物质,如生物碱、甙类、萜类等成分的新陈代谢途径。有关这些代谢途径的学说很多,其中不少还是设想,例如认为醋酸酯一丙二酸酯(Acetate-Melonate)途径合成脂肪酸、酚­性­化合物、蒽醌等成分,3,5-羟基一3-甲基戊酸酯(Mevalonate)途径合成萜类、甾类等成分,莽草酸(shikimicacid)途径合成芳香族氨基酸、有机酸及其他化合物;氨基酸途径合成生物碱等成分。

0 0

一秒记住www点dier22点com,最新小说等你来
『加入书签,方便阅读』