第二书包网

收藏备用网址www.dier22.com不迷路
繁体版 简体版
第二书包网 > 轮回之巅峰 > 第四百五十三章

第四百五十三章

s;1882年得c=(2.99853±0.00060×10m

s。后来,他综合旋转镜法和旋转齿轮法的特点,发展了旋转棱镜法,1924~1927年间,得c=(2.99796±0.00004×10m

s。之后迈克耳逊在推算真空中的光速时,应该用空气的群速折­射­率,可是他用的却是空气的相速折­射­率。这一错误在1929年被伯奇发觉,经改正后,1926年的结果应为c=(2.99798±0.00004×10m

s=±4km

s。

后来,由于电子学的发展,用克尔盒、谐振腔、光电测距仪等方法,光速的测定,比直接用光学方法又提高了一个数量级。而在60年代雷­射­器发明,运用稳频雷­射­器,可以大大降低光速测量的不确定度。在1973年达0.004ρpm,终于在1983年第十七届国际计量大会上作出决定,将真空中的光速定为­精­确值。而在17世纪前人们以为光速为无限大,意大利物理学家G.伽利略曾对此提出怀疑,并试图通过实验来检验,但因过于粗糙而未获成功。1676年,丹麦天文学家O.C.罗默利用木星卫星的星蚀时间变化证实光是以有限速度传播的。1727年,英国天文学家J.布拉得雷利用恒星光行差现象估算出光速值为c=千米

秒。

而光速的测量,首先在天文学上获得成功,这是因为宇宙广阔的空间提供了测量光速所需要的足够大的距离.早在1676年丹麦天文学家罗默(1644—1710)首先测量了光速.由于任何周期­性­的变化过程都可当作时钟,他成功地找到了离观察者非常遥远而相当准确的“时钟”,罗默在观察时所用的是木星每隔一定周期所出现的一次卫星蚀.他在观察时注意到:连续两次卫星蚀相隔的时间,当地球背离木星运动时,要比地球迎向木星运动时要长一些,他用光的传播速度是有限的来解释这个现象.光从木星发出(实际上是木星的卫星发出),当地球离开木星运动时,光必须追上地球,因而从地面上观察木星的两次卫星蚀相隔的时间,要比实际相隔的时间长一些;当地球迎向木星运动时,这个时间就短一些.因为卫星绕木星的周期不大(约为1.75天),所以上述时间差数,在最合适的时间不致超过15秒。

因此,为了取得可靠的结果,当时的观察曾在整年中连续地进行.罗默通过观察从卫星蚀的时间变化和地球轨道直径求出了光速.由于当时只知道地球轨道半径的近似值,故求出的光速只有km

s.这个光速值尽管离光速的准确值相差甚远,但它却是测定光速历史上的第一个记录.后来人们用照相方法测量木星卫星蚀的时间,并在地球轨道半径测量准确度提高后,用罗默法求得的光速为±60km

s。

而在1728年,英国天文学家布莱德雷(1693—1762)采用恒星的光行差法,再一次得出光速是一有限的物理量.布莱德雷在地球上观察恒星时,发现恒星的视位置在不断地变化,在一年之内,所有恒星似乎都在天顶上绕着半长轴相等的椭圆运行了一周.他认为这种现象的产生是由于恒星发出的光传到地面时需要一定的时间,而在此时间内,地球已因公转而发生了位置的变化.他由此测得光速为:C=千米

秒这一数值与实际值比较接近。

0 0

一秒记住www点dier22点com,最新小说等你来
『加入书签,方便阅读』